Seasonal thermal energy storage
Inter-seasonal thermal energy storage also called seasonal thermal energy storage (STES) works in a very similar way to ground source heat pumps in that heat or coolth is store in, effectively, a battery with the main difference being that rather than extracting the existing heat or coolth from the ground via the coupling effect, it actively stores heat in the ground for use many months later.
Most inter-seasonal systems are heating systems that use solar collection to increase the amount of heat energy collected during warmer summer months. The solar collection systems can be relatively simple with a network of pipes laid close to the surface beneath a dark heavy finish, such as black tarmac. As such they can be laid beneath road systems, car parks or playgrounds. Similar to ground source heat pumps, a second system of pipework is installed deeper into the ground, or potentially beneath a buildings foundations.
At a depth of around 7 metres the earth's temperature tends to remain at a natural constant 10 degrees, which is the temperature standard ground source heat pumps run at, in these seasonal systems the extra heat within the solar collectors beneath the surface is pumped down to the deeper levels to achieve a constant temperature of around degrees. The ground loops are specifically designed to be able to take these increased levels of heat and store this over longer periods of time. In the colder winter months when outside temperatures are lower, the heat from the deep pipe systems is extracted via a heat pump and can be used to heat buildings during the colder months.
[edit] Related articles on Designing Buildings
- Coefficient of Performance CoP.
- Dynamic thermal modelling of closed loop geothermal heat pump systems.
- Earth berm.
- Earth bermed buildings.
- Earth to air heat exchangers.
- Energy storage.
- Energy storage for buildings.
- Energy storage - the missing piece?
- Energy targets.
- Environmental policy.
- Emission rates.
- Geothermal pile foundations.
- Geothermal energy.
- Ground coupling effect.
- Ground energy options.
- Ground energy options
- Ground source heat pumps.
- Ground preconditioning of supply air.
- Large scale solar thermal energy.
- Renewable energy sources: how they work and what they deliver: Part 3: Electrically driven heat pumps DG 532 3.
- Thermal labyrinths.
- Sustainability.
- Solar photovoltaics.
- Solar thermal energy.
- The future of UK power generation.
- Thermal labyrinths.
- Wind Energy in the United Kingdom.
[edit] External Links
Featured articles and news
Timber in Construction Roadmap
Ambitious plans from the Government to increase the use of timber in construction.
ECA digital series unveils road to net-zero.
Retrofit and Decarbonisation framework N9 launched
Aligned with LHCPG social value strategy and the Gold Standard.
Competence framework for sustainability
In the built environment launched by CIC and the Edge.
Institute of Roofing members welcomed into CIOB
IoR members transition to CIOB membership based on individual expertise and qualifications.
Join the Building Safety Linkedin group to stay up-to-date and join the debate.
Government responds to the final Grenfell Inquiry report
A with a brief summary with reactions to their response.
A brief description and background to this new February law.
Everything you need to know about building conservation and the historic environment.
NFCC publishes Industry White Paper on Remediation
Calling for a coordinated approach and cross-departmental Construction Skills Strategy to manage workforce development.
'who blames whom and for what, and there are three reasons for doing that: legal , cultural and moral"
How the Home Energy Model will be different from SAP
Comparing different building energy models.
Mapping approaches for standardisation.
UK Construction contract spending up at the start of 2025
New construction orders increase by 69 percent on December.
Preparing for the future: how specifiers can lead the way
As the construction industry prepares for the updated home and building efficiency standards.
Embodied Carbon in the Built Environment
A practical guide for built environment professionals.